|
re:剧场内空间环境地设计(3) 五、照明...
剧场内空间环境地设计(3) <br>
五、照明 <br>
只有有了舞台照明,演出才能被看见,如果照明不佳就会在演员和观众之间失去了联系。舞台照明是从许多位置上的灯具在舞台上形成一个照明的场,提供特殊的艺术效果,表现出形体的立体感,产生戏剧的情绪和气氛。这些功能都是通过各种光质、光量、光色和光方向的变动来取得的。<br>
<br>
灯具的位置有台前和台内的二大类,对于观众厅空间有影响的是台前的照明设施和位置,其要求是:面光灯投射到舞台面上大幕中心点处的光轴与台面的夹角为45-50度,不大于55度。面光槽开口的净高应大于0.7m,如果要安装上下两排灯应为1.2m,其深度为0.8m-1.2m;面光灯架高为0.8m,挂灯位置为0.7m,与走道的距离为0.1m。面光槽内的高应大于1.8m,有排烟道和吸声处理,防火以及通风等措施。耳光以能照射主台的深度越深越好,希望能够照射到舞台的2/3表演区的面积,其照射角为45度左右。耳光槽应距台面3米以上,离台口不小于6m。耳光灯最少有4排,每排为3个灯具。其开口宽为1.7米,灯架间距为0.7,有时可以在大厅后端的上部设置1-2个追光灯。<br>
<br>
灯控室要求能全面地通过观察窗看到演出的整体艺术效果。其面积为15平米左右观众厅的照明每平方米约5-10W。<br>
<br>各部分灯光安装功率表<br>
<br>灯光种类 回路数 每回路功率(kw) 合计功率(kw) 总功率(kw) <br>
面光 30 2.0 60 <br>
耳光 16 2.0 32 <br>
立柱光 10 2.0 20 <br>
反光 30 2.0 60 <br>
地排灯 40 2.0 80 <br>
流动光 8 2.0 16 <br>
脚光 6 2.0 12 <br>
排光 30 2.0 60 340 <br>
注:中、小型舞台灯光的容量为100-200KW<br>
<br>六、听觉——音质设计的基本要求<br>
<br> 1、声压级<br>
<br>
观众厅所具有的声压级是观众厅音质的一个必要的因素,只有在具有适宜的声压级的条件下,也就是在听得到的情况下,才有评价语言清晰和音乐的其它音质属性的可能。<br>
<br> (1)适宜的声压级<br>
<br>
观众厅内应有适宜的声压级,对于音乐来说:声压级Lp=85dB,能够大于此值更好,这样观众厅内才有足够的“空间感”,假如Lp=70dB,“空间感”也就不存在了。所以,一般应有78-82dB。对于语言来说,观众厅内的声压级应在65dB以上,否则听音时会感到很费劲。交响乐的合适的动态范围为45-95dB,室乐的声压级为68-85dB。对于通俗歌曲、音乐则希望能达到90-95dB,而瞬时声压级或最大声压级应达到105dB,这在当前的体育馆中是必要的,有的甚至还要达到115dB,当然这是在扩声系统的条件下,才能达到的。歌舞厅中也应达到此要求,否则创造不出气氛来。<br>
<br>
(2)直达声与距离的关系<br>
<br>
声能是随距离的增加按平方成反比下降的,也就是距离每增加一倍,声压级降低6dB。从杭州剧场中实测的结果表明,在舞台的表演区内,声源的声压级78dB,观众厅的第一排处(与舞台之间有乐池)的声压级则为60dB,大约衰减了18-20dB(其距离约8米)。所以镜框台口箱形舞台的观众厅的第一、二排的音质一般是差的,而从统计表明,具有音质良好的音乐厅,其听音最佳处是在离乐队指挥处大约18米左右的座席区域,这里具有足够的响度,并感到被混响声所笼罩着,直达声和混响声的平衡很好,乐队中部和后部的乐器好象离听众的距离相同,这正好与有效性最高的视距相符,这也说明了视、听通感的特性。我国古典戏台如颐和园、故宫中的大戏台,它们的表演中心离宝座处的距离大约为17米。而在39-49米处对于音乐来说,响度已是差了,对于语言来说,在25米处的响度已经不够,例如一个90-100人组成的乐队,其直达声到达30米的响度是10米处的一半9即声压级约减少10dB)。所以,一个观众厅内的声音情况是不同,即使世界著名的音乐厅,其座位也不能达到百分之百听得满意的。作为世界音乐厅音质典范的维也纳音乐厅,其听得好的座位占91.5%,其它也是听得不尽满意的。<br>
<br>
(3)直达声衰减的特点<br>
<br>
a)衍射效应<br>
<br>
位于舞台上的声源,一般高为1.5m,舞台高为1m;池座前区(第4、5排至第10、11排)的升起为0.3-0.6m,而从在座椅上人的耳朵高为1.2m;因此,声源与该区域的接收点之间的高差约为1m左右,所以,直达声到达这区域各座的入射角很小,属于掠射的情况,掠射的声能会产生衍射效应,对于中、高频的声能衰减很大。在杭州剧场的模型(1/10比例)中进行的试验结果:从舞台口上部的顶棚反射到池座前区的声能衰减为1-2dB,而反射于舞台口两侧墙下部,到达池座前区的声能衰减为6dB,而两者的距离是相同的,这表明了声能入射角对其衰减影响很大。另外,人坐在座椅上,人头表成了一个有规则分布的起伏表面,它对于中、高频的声能衰减也很大。在斯里兰卡的班达拉奈克纪念堂内的480座会议厅测试结果,该厅存在着由平行两侧墙产生的颤动回声,从示波吕帮记录仪的记录中也明显地表明其存在的特点,该声馈入传声器中明显地能听到有金属声。在该厅中,集中于中部均匀分布100人,经测试,上述现象仍然存在,而当该100人均匀地分布在全厅的座位上,此时,厅中的座位表面即形成了有规则分布的起伏表面,具有了衍射效应,经测试,无论在示波器和记录纸上颤动回声的现象即消失了,并且由场声器辐射的声音也失去了金属声感觉的现象;测试表明该效应主要是在500-1000(Hz)的范围内。<br>
<br>
从上述情况表明,观众厅的池座前区,直达声的中、高频的能量衰减是很大的。<br>
<br>
b)共振吸声<br>
<br>
观众厅中的座椅,它们排与排之间形成了一个空腔,它具有共振吸收声能的特点,经过测试,表明它在125-250Hz具有很大的吸收,尤以125Hz处。当座椅取消后,或排的升值(C)为0.10-0.12m时,这种共振吸收不没有了。因此,目前一般观众厅的升值(C)为0.06m或隔排为0.12m的情况下直达声的低频衰减也是很大的。这在杭州剧院的模型试验中心得到了证明。<br>
<br>
c)反射声能补偿不够<br>
<br>
由上可知,直达声能衰减很大,须要有反射声的补偿。其补偿有从舞台口部的顶棚反射来的反射声外,还有是反射于舞台口侧墙的反射声。而反射于侧墙的反射声,当反射于声源高度以上的,都向楼座方向反射;只有反射于声源高度以下的,才能向池座前区方向反射;但是这一部分的反射声,也只能在声源与接收点之间的高度为1m的范围内才具有可能性,所以,其能量是很少的,并且往往由于侧墙的斜角太大,而反射不到池座前区的中部,只能到达前区的两侧,所以池座前区中部往往不能受益。目前,声学设计大多数是在观众厅的纵剖面和平面中进行声线分析,特别是在平面分析中,是很明确地能把反射于侧墙的反射声充分地覆盖在池座前区的中部,但是,这种情况,只是在与声源同高度的平面中才能成立,因此这种在二个面内进行声学分析的情况是不符合声音是在观众厅内立体地进行反射的实际情况,所以,其分析的结果往往是错误的。目前,大多数观众厅内的池座前区音质不良的原因:首先是直达声的声能在高、中和低频范围内衰减过多,响度不够,又由于基于二个面进行声线分析的错误结果,使该区域内得不到应有的反射声的补偿。<br>
<br>
2、混响时间<br>
<br>
混响时间对于观众厅的音质来说是一项重要的评价标准,但是它具有很大的弹性,例如,对于语言和朗诵来说,混响时间可选为1.2-1.6s,对于采用扩声系统的观众厅也是适合的;多功能厅(包括歌舞厅)可选择为0.7-1.5s,专业性的立体声宽银幕电影院为0。8-0。2S,兼有立体声宽银幕电影的多功能观众厅可以是1.0+/-0.2s9此值是由广东省电影公司所认定),经实践表明此值是可行的。对于交响乐来说,则应选用1.7-2.3s的混响时间。体育馆的混响时间要求不很严格,按照已有的使用经验,2s的混响时间,对于比赛、会议等是能满足使用要求的。近来由于体育馆的使用情况变化很大,约15%是体育比赛,65%则是演出,并以通俗歌曲和音乐为主,所以对混响时间的要求日趋于短,以便充分发挥各种人工混响、延迟器等周边设备的效用和制作,以1.5s左右为好,小型体育馆则以1.5-1.3s为宜。<br>
<br>
1922年赛宾发现室嵴混响时间的改变而引起对声音印象的变化。室内混响短,语言清晰而干,音乐失去体积感(厚度),即失去了习惯的房间体积的感觉。这种观察引起了广泛地对混响时间研究的兴趣,即寻找“最佳混响时间”。该项研究工作中,努特生起了奠基作用,他所建议的“最佳混响时间”是取决于房间的体积。这时期中的有关研究都没有考虑到房间的体型对混响时间的影响。<br>
<br>
1936年苏联学者福尔都也夫建议的“声学比”,1953年德国学才梯雷提出的“明晰度”等都是基于混响过程的最初部分——前次反射声的基础上,这部分声能是有效的,可以增强音节。<br>
<br>
实际上,混响时间的变化在10-15%范围内是不会被感觉到的。<br>
<br>
1997年西德R.Gerlach等人提出把混响过程看为马尔学柯夫链(Markoff Chain0的形式,认为室的体型和材料的吸声系数和位置三个因素混响时间是有影响的,并通过在三个矩形室内的试验,它们的总吸声值9A)是相同的,但是布置的吸声材料系数是不相同的,结果表明,强吸声的材料集中布置获得了最短的混响时间,与用艾润公式计算结果相比约短10%。<br>
<br>
从上表明影响混响时间的因素很多,在目前仍然在进行着研究,很多因素的作用还不能进行定量的分析,所以,即使确定了理想的混响时间,也不能保证观众厅就具有良好的音质,它只是决定观众厅的音质好的因素之一。<br>
<br>
混响时间的计算公式:<br>
<br>
<br>
<br>
式中m——空气吸声系数,在1000Hz以上要计算此值:a——室内各界面吸声系数的平均值,此值的选取很复杂,应是声学工作者的工作范围 ;V——室的容积;S——是室内各界面的总表面积。<br>
<br>
从混响时间的计算式可知:V/S值的增加可以使室内混响时间增长,它是决定观众厅内混响时间的主要参数,并与建筑设计有关。<br>
<br>
目前我国观众厅的V/S值一般为1.5-2.5,国外的大约为2.5-3。当观众厅的体积超过了5000-6000立方米时,往往设有楼座,所以V/S的值不会随体积增加而明显地增加。音质优良的音乐厅和歌剧院大约为3.7左右。<br>
<br>我国观众厅的V/S值也目趋增加,首先是因为扩声系统已经是观众厅中必不可少的设备,其主要设备的高度约为1.2-1.3m,位于舞台口部上部,加上建筑的线脚和为了阻上扬声器辐射的声音经顶棚反射而产生不良影响,因此在扬声器高度以上还要有一距离,一般在舞台口以上要有2.5m左右的高度,这样就使舞台口主扬声器与面光槽之间顶棚的高度增到11m左右的高度,这是以往常在9m以内的情况相比,现在的观众厅的体积是有了很大的增加;为了使V/S保持在恰当的比值,则设计时应考虑多增加观众厅内的表面,即S值,因此,包厢、多层挑台等的使用从控制混响时间来说也合理的,为设计观众厅构思上也能增加很多有益的手法。<br>
<br> 3、前次反射声<br>
<br>
众所周知,具有相同混响时间的大厅而音质并不一定相同,如美国的波士顿音乐厅和纽约林肯中心的音乐厅,混响时间大约都为2s,可是音质却相差很大,另外,既然在同一大厅内,音质效果各处也不相同,虽然它们的混响时间一一般地是相差很少的,例如,池座前区的音质条件一般是很差的,不仅听不好,有的还听不到或听不清,而楼座后区的音质一般较好。所以混响时间是室内音质的重要标准,却不是唯一的标准。<br>
<br>
近三十多年来,对于前次反射声的研究发展很快,并取得了重要成就,发现它对大厅的音质具有重要的作用,甚至有比混响时间更为重要的趋势。它与大厅的响度、语言清晰度、亲切感、明了度、明亮感有关;它和混响声能之间具有好的平衡,可以影响语言的自然音调和音乐的丰满度等;几乎它与大厅中的一切音质标准都有关。<br>
<br>
从实际中发现,室内的混响过程只有在过程中结束部分才能保持了比较高的扩散声场的条件,因此,大多数情况下,室的体型很少影响这部分的。混响过程的初始部分是由连续而来的反射声所构成,这些反射声是从各个方向反射来的,它们直接与室的尺寸、比例、体型与吸声材料的位置以及建筑细部处理有关。<br>
<br>
70年代开始,对前次反射声对音质的作用进行了大量的研究,一般认为有三部分组成它的特性。<br>
<br>
(1)能量——第一次反射声的声能与直达声的声能越接近,则“空间感”越好;这表明要有强的第一次反射声。<br>
<br>
(2)时序——反射声与直达声之间的时间间隔即序列,对于语言和音乐的作用是不同的。音乐要求“空间感”和“透明度”,希望第一个反射声滞后20-30ms,第二个为35-45ms,第三个为45-70ms。语言要求是清晰度,希望第一个反射声滞后10-20ms,第二个为15-25ms,第三个为25-45ms。假如增长第一个反射声与达达声之间的时间间隔,将会增加“空间感”而在某种程度上会减少清晰度。<br>
<br>
在50ms前的各个前次反射声所形成的“丰满”情况下,会感到响度提高,这是由于50ms前的前次反射声加强了直达声的强度。从响度比较试验结果表明,在主观上感到响度差别很大的两种组合方案,经仪器测量所得的声压级数据的差别是不大的,说明了混响声对响度的影响并不大,在扩散好的条件下,声压级会有些增加。接着而来的80-110ms的前次反射声对响度也是有效的,也可以增加“丰满”的感觉。<br>
<br>
由于50ms前的前次反射声加强了直达声的声压级,所以也就改变了声学比,从而改善了“清晰度”或“明晰度”;也可以使听者与声源之间的距离接近,特别是20-30ms的反射声,增进了“亲切感”。<br>
<br>
50ms前的反射声会形成声音的“饱满”、“浑厚”和“坚实”;而在80-100ms的反射声则具有“空旷”、“辽阔”的感觉。这两者的结合才具有“丰满”的感觉。前者加大了直达声的响度,才有‘饱满’、“深厚”和“坚实”的感觉,这是形成“丰满”的主要因素;而“空旷”、“辽阔”则是人耳对于前次反射声的距离和空间感受而形成的,它烘托了声音“丰满”的气氛,并对“融洽”有利。<br>
<br>
(3)方向——所有前次反射声与直达声的方向相同,则没有“空间感”,而具有三个不同方向的反射声,即使没有混响过程,也会具有明显的“空间感”效应。从实验结果也表明,从正面来的声音作为0度方向,则自0-20度方向来的声音基本上感到是正面来的,它和直达声混在一起。从30度-70度来的侧向声音,感觉最灵敏,仿佛从室内四面八方来的,感到全身浸润在声音之中,具有“空间感”;对于音乐的“丰满度”,语言的“清晰度”也是有利的,从后方来的反射声会使音质变坏。<br>
<br>
综合上述,构思观众厅的尺寸、体型和吸声处理时,应考虑观众席,特别是池座前区的观众席上,应该有前次反射声的数量(能量)、时序和方向的最佳组成;也就是应具有在50ms内有三个反射声,假如从20ms左右开始一直到80ms之内有五个反射声,并且是逐次地到达,它们的强度是随时间衰减是指数的,这些前次反射声的序列图形呈圣诞树式的,这样,这些前次反射声与观众厅固有振动方式融洽在一起,组成了“音调”这种“音调”代表了该观众厅的音质特性。另外,这些反射声应该大多数是从30-70度方向来的,也就是要求是侧向反射为主,这样“空间感”好。<br>
<br>
4、扩散<br>
<br>
关于扩散的研究开始于40年代,它是指在室内任意一点,平衡地接收到大量的、所有可能方向的反射声能密度与直达声能密度之比。它对“丰满度”、“活跃度”、“空间感”是有利的,并且能保持丰满和明晰度之间的平衡,语言清晰度和较长混响时间之间的平衡,还可以保持观众厅内音调的自然性。可以使室内声能分布均匀,消除回声等。室内扩散不好,音色往往很粗糙。<br>
<br>
扩散与房间的尺寸、比例、体型有关,由于在实际中,存在着前次反射声的作用,因此,只有随着声音衰减而增加了它的作用。<br>
<br>
不对称、不规则的体型对扩散有利,或者声源位于室内一偶也能达到扩散的目的。所以很多不对称平面或空羊的大厅,其设计目的即在此,大厅内有园柱体、半柱体以及包厢、多层小挑台等,是有利于扩散的。而有规则起伏的扩散体则扩散作用更大。假如室内需要布置大量的吸声材料,如立体声电影院、录音室等,应使强吸声材料与声反射材料交错布置,也能起到扩散作用。<br>
|
|